reserpine-induced ptosis. In these instances. apparently the stimulation mechanism is not of MAO inhibition origin.

Compounds IV and XII show significant (ρ) > 0.05) increased sleeping times in mice. The control gronp had an average slecping time of 11.7 ± 8.0 min. The amimals receiving IV showed a sleeping time of 24.4 $\pm 5.0 \mathrm{~min}$ and those receiving XII showed 28.3 ± 2.4 min. These data correlated well with the data obtained in the ptosis-inhibition study, verifying the ptosis test that these two componds have JIAO inhibitory activity. Had the activity of these rompounds beep merdy stimulatory, then a derreased sleoping timo would have been observed.
la view of the mode and rate of administration of acuecous solutions of IV and XII, the effect on rabbit bood pressure and respiration was somewhat delayed in beroming apparent. After a $\overline{\mathrm{B}}$-hr time lapse from the imitial administration of $I V$ at a dose level of 0.8^{-}, momole/ky iv, there was an acute rise in blood pressure to a systolic level of 150 mm from a previons level of 110 mm . This presure remained farly steady for'2 hr after which time toxic manifestations were noted.
'The respiratory rate showed a grabhal increase over the contire period of obscrvation from a level of $30 / \mathrm{mm}$
after pentobnebital ancsthesia to approximately $70 / \mathrm{min}$ after 3.5 hr cren with additional pentobarbital. These data suggest romtral stimulatory activity sufficiment 10 revense pentobinbital depression. ladeed, onere the stimulatory effects berome apparent, the :ummal peguired an additional total dose of $46 \mathrm{mg} / \mathrm{kg}$ of pentobarbital in order to mantain the anesthetized state.

The resnlts of the EEEG stndy showed that at the dose level of $180 \mathrm{mg} / \mathrm{kg}(T+5$ hr $)$ bmolled spiking could be observed. At this time, the mimal was tosted for reaponse to paim mad deep tendon reflexes. The nequative results indicated that the faster liscr artivity was probably not due to light ancesthesia.

Changes obecreal in the ESCr were not ancommon for ammals moler ancsthesia for this period of time and showed no myorardial dimage or cardiotropic adtivity.

Similar intravenous administration of XII at 1.35 mmole. $/ \mathrm{k}$ g did not show the type of response amalogot to 15 . lourther researeh on this is in progress.

Acknowledgment. The mithors wish to thank Mrs. J. Rin for her technima assistance and Mr. (r. Johmion, Mr. 1). Calley and Miss M. (rolaz for their help in the bishogival eraluation of the compounds.

3-Phenylcinnolines. I. Some Reactions and Derivatives of 3-Phenylcinnoline-4-carboxylic Acids

Harman S. Lowrie
Dirision of Cheminal Researsh, G. D. Soale and Companh. Chirage do, Illinoin

Received Febrmary 2\%. 10ne;

A series of amide, hydrazide, and ester derivatives of the title arids and two phenylhutazome analoge of 3 phenylrinnoline were prepared. These were examined for pharmacologion artivity.

In a rontinued search for less toxic analogs of phenylbutazone, the report of lower toxicity of its benzyl analog ${ }^{1}$ and the ready availability of 3 -phenyl-"imoline-4-carboxylic acid* led initially to the preparation of the "benzyl-bridged"a analogs. ${ }^{4}$ Ia and Ib , and of derivatives of this acid for general phamacological testing. Later: the development of methods for con-

$$
\begin{gathered}
\text { Ia, } R_{1}+R_{2}=- \\
\text { b, } R_{1}=R_{2}=-\mathrm{H}
\end{gathered}
$$

[^0]verting this acid to the 4 -chloro analog from whith cimolines vagnely analogous to chloroquine might bo prepared. and the discovery of the hypotensive activity of certain 4 -aminorimolines enconraged an expansion of the series.

The starting materials (Chart I and Table I) were prepared by a slight modification of the procednres of Baungarten and Fumas" (see Experimental Section). Attempts to extend this synthesis were only partially successful: noder the conditions used, a reasomable rariation of substituents appears to be feasible on the phenyl of the aldehyde portion of the hydrazones II, hat several attempts to use other aldehydes such an acetaldehyde, phenylacetaldehyde, or isonicotinaldehyde were unsuccessful. Further, substituents in the phenylhydrazine ring of II appear to be limited to those which allow mild conditions for the FriedelCrafts reaction: methyl (IIf and IIg) went well as was reported by Baumgarten and Furnas for IIf, ${ }^{2}$ but fluoro ($\mathrm{II}, \mathrm{R}^{\prime}=\mathrm{F}: \mathrm{R}=\mathrm{H}$) would not allow cyclization to the isatir." ln a single experiment with the methoxyhydrazone Ith a low yield of slightly impure adid (IVh) was obtained after rearrangement. Since

[^1]| Structure ${ }^{a}$ | Crystn solvent ${ }^{b}$ | $\mathrm{Mp} .{ }^{\circ} \mathrm{C}$ | --C. \quad - - $\%$ - | | | | $\overbrace{\text { Caled }} \mathrm{N} \cdot{ }_{\text {Found }}$ | | $\overbrace{\text { Caled }} \mathrm{R}, \%_{\text {Found }}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Caled | Found | Calcd | Found | | | | |
| IIIb | Ee | 190-191 | 72.71 | 72.47 | 4.58 | 4.61 | 10.60 | 10.56 | | |
| IVb | A | 207-208 | 72.71 | 72.65 | 4.58 | 4.63 | 10.60 | 10.45 | | |
| IIIc | Ee | 173-175 | 68.56 | 68.36 | 4.32 | 4.37 | 10.00 | 9.94 | 11.07 | 11.28 |
| IVc | Aa | 249-250 | 68.56 | 68.54 | 4.32 | 4.39 | 10.00 | 10.04 | 11.07 | 10.85 |
| Ve | $E e^{c}$ | 111-112 | 76.25 | 76.56 | 5.12 | 5.10 | | | 13.13 | 13.28 |
| IIId | E | 237-238 | 63.28 | 63.15 | 3.19 | 3.24 | 9.84 | 9.65 | | |
| IVd | A | 210-211 | 63.28 | 63.61 | 3.19 | 3.35 | 9.84 | 9.69 | | |
| Vd | sKC | 146.5-147.5 | 69.86 | 70.16 | 3.77 | 4.07 | 11.64 | 11.86 | 14.73 | $14.5 \overline{5}$ |
| IIIe | Ne | 223-224 | 67.16 | 66.98 | 3.38 | 3.76 | 10.45 | 10.68 | | |
| IVe | B | 216-217 | 67.16 | 67.22 | 3.38 | 3.57 | 10.45 | 10.63 | 7.188 | 6.95 |
| IIIf | Ee | $150-151^{d}$ | | | | | 11.11 | 10.74 | | |
| IVf | B | 222-223 ${ }^{\text {d }}$ | | | | | 10.58 | 10.68 | | |
| If | M | 139.6-140.3 ${ }^{\text {d }}$ | | | | | 12.72 | 12.91 | | |
| IIge | Ee-SKB | 147.5-148.5 | 68.71 | 68.77 | 5.35 | 5.46 | | | 14.49 | 14.69 |
| IIIg | Ee | 216-217 | | | | | 9.38 | 9.34 | 11.87 | 12.16 |
| IVg | B | 211-212 | 64.33 | 64.23 | 3.71 | 3.90 | 9.38 | 9.54 | | |
| Vg | M | 185-186 | 70.72 | 70.97 | 4.35 | 4.59 | 11.00 | 11.01 | 13.92 | 14.01 |
| IVhf | Aa | 229-230 | 68.56 | 67.91 | 4.32 | 4.45 | 10.00 | 10.28 | | |

${ }^{a}$ See Chart I. ${ }^{b}$ Ee, ethyl ether; E, ethanol; SK (Skellysolve, see ref 20); A, acetone; Aa, acetic acid: Mle, methylene chloride; B, butanone; M, methanol; C, chloroform; Bz , benzene. ${ }^{\text {c The principal contaminant after decarboxylation is the demethylated ma- }}$ terial which is best removed by extraction by dilute potassium hydroxide before crystallization. ${ }^{d}$ Baumgarten and Furuas ${ }^{2}$ give melting points of IIIf, $14 \overline{5}-145.5^{\circ}$; IVf, $229-229.5^{\circ}$; Vf, $138 . \overline{5}-139.5^{\circ}$. ${ }^{e}$ This hydrazone was prepared in refluxing Skellysolve L. ${ }^{20}$ in In a single experiment the isatin was not obtained crystalline; the oil obtained by evaporation of the dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (see IIIa) was rearranged without purification.
Chart I

II

$\xrightarrow{\Delta . \mathrm{KOH}}$
III

	R^{\prime}	R
a	H	H
b	H	CH_{3}
c	H	OCH_{3}
d	H	Cl
e	H	F
f	CH_{3}	H
g	CH_{3}	Cl
h	$\mathrm{CH}_{4} \mathrm{O}$	H

the experimental variations are by no means exhausted, a further examination might broaden the usefulness of the reaction. ${ }^{7}$
(7) The author wishes to acknowledge the excellent teclinical assistance of Mr. Richard J. Salzmann in the preparation of several of the compounds in Table I.

For the acids IV in Table I, the solitary activity found in any of the tests ${ }^{8-12}$ was the borderline ${ }^{132}$ antiinflammatory ${ }^{8}$ action of IVd.

Reduction of 3 -phenylcinnoline with zine dust and barium hydroxide ${ }^{14 a}$ yielded a dihydro derivative, ${ }^{14 b}$ undoubtedly the $1,4,{ }^{15}$ which tautomerized on reaction with butylmalonyl dichloride to yield the derivative Ia. ${ }^{4 \mathrm{a}}$ Catalytic reduction furnished the corresponding tetrahydrocinnoline (Ib). The structures of these compounds are confirmed by the similarity of their infrared absorption spectra to those of other malonyl derivatives ${ }^{3}$ and to that of phenylbutazone, and by their showing the expected nmr spectra. ${ }^{10}$ Unfortunately, neither showed antiinflammatory activity ${ }^{8.9}$ at the screening dose. ${ }^{13 \mathrm{a}}$

Reaction of the acids IV with thionyl chloride provided the acid chlorides VI which were treated as described below, and which were used to prepare the amides, hydrazides, and esters in Tables II-VI.

[^2]
"Componnds 2-6 were prepared as 1 in the Expersmental Section. Componnds $7-9$ and 11 were prepared as 10 in the Experimontal Section but were crystallized from the solvent. indicated. ${ }^{b}$ see "lable I, footnote b.

「Table III
Ampontiky Ampher

Nı, ${ }^{\text {a }}$	x	Am	Crysto solvent ${ }^{1 /}$		$1 . \%$		11.		N.	
				111. ${ }^{\circ}{ }^{\circ}$	(alul	Fume	Culed	Fomme	Calcel	Fomm
1	\because	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	Mc--SKB	127-12S	71. ${ }^{\text {c }}$	72.05	(6, 6:3	6.58	16.76	16.5s
2	3		A	17!)-180	71.192	711.62	(9.90)	6.94	17.98	17.58
i	$\underline{2}$	$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	1e-sKA	137-1.3:1	71.29	70.96	15.29	6.25	17.49	17.37
4	\because	$\mathrm{N}\left(n-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}$	$\therefore \mathrm{KB}$	109-110	73.37	73.3t	7.50	7.62	14.8S	14.97
5	2	$\sqrt{0}$	A SKB	130-1:31	(6!) 3 ! 1	69.62	(${ }^{\text {, 12 }}$	6.18	1i) 46	15:30

Trbie 11
Pherazine Aumen

No."	R	Crysta shlvent ${ }^{*}$	M1, ":	1,		1t, \%		N, ',	
				Caled	Fommd	'aleol	Fomme	Cald	Fommel
1	$\mathrm{H} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{\text {' }}$	N1	186-18i	63.5 s	(i3) 47	5. 111	- . 3 \%	12.90	12.85
$\underline{2}$	CH_{3}	Mc-skB	1.84-185	72.27	72.1心	6.117	6.02	10.86	15.95
3	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	M-Ee	125-127	69.59	69.83	6.12	6.14	15.46	15.1:
4	NH_{2}	\-Ee	164-167	68.45	68.27	5.74	.5. 84	21.01	20, 013
\bar{j}	NHCOCH_{3}	Bz-Eie	181-182	67.18	66.82	5.64	5. 66	18.66	18.72

"Compound 2 was prepared as 1, Table IIL: 3 as 1 in the Lexperinental Section: $\mathbf{4}$ was freated as 1, Tabhe IHI, and was worked up) as 4, Table III. Compound 5 was prepared from 4 and acetic anhydride in methylene chloride, and was worked up in 4. Table 111. ${ }^{\circ}$ Sce Table I, footnote b. o Maleir acid salt.

Several attempts were made to prepare the 4 -benzoyl derivatives VIII (Chart II). The Friedel-Crafts reaction in benzene using VIa gave a low yield of the intramolecular eyclization product VIIa (the presence of VIILa camot be excluded), which was better prepared in carbon disulfide. Reaction of VIc in benzene
gave principally VIlIc along with VIIc. prepared in erratic yields in chlorobenzenc. Reaction of the ester IX with phenyInagnesium bromide afforded, along with starting material and biphenyl, two products: a small amount of the 1 -phenyl ester XI, which probably arose from 1:2 addition of the Grignard to the azo

${ }^{a}$ Compound 1 was prepared as $\mathbf{5}$ in the Experimental Sertion but, on making the hydroxide extract. nentral, the product crystallized. It was filtered off, dried, and recrystallized from benzene. Compound 2 was prepared from 1 by refluxing in, then crystallizing from, acetone. Compound 3 was prepared as 5 , but the hydroxide extraction was omitted. The residue on evaporation was stirred with ether, filtered off, and crystallized as indicated in the table. Compounds 4 and 6 were prepared as 3.

Table VI

Esteris

a These compounds were prepared as 1 , Table III; the maleic acid salts of the crude products were crystallized from the solvent indirated. ${ }^{b}$ See 'Iable I, footnote b. ${ }^{c}$ Maleic acid salt,
bond, followed by tautomerization ${ }^{15}$ to the $4-\mathrm{H}$ derivative; and the dihydro ester Xa , formed by reduction by the Grignard. A related ester (Xb) was isolated in low yield in an attempt to prepare the primary hydrazide (see related hydrazides, Table V) from methylhydrazine in refluxing butanol; hydrazines are known to cause reduction of azo bonds under similar conditions. ${ }^{16}$

The structure of the dihydro ester Xa is derived from the infrared and nmr spectra. A single, $\mathrm{D}_{2} \mathrm{O}$-exchangeable proton is seen at 2.9μ and at 48.5 cps , respectively. The carbonyl band at 5.77μ and the ethoxy pattern in the nmr (quartet centered at 245 cps integrating for two protons, triplet at 65 cps , three protons) establish the ester. The 4 -hydrogen occurs as a single peak, one proton, at 308 cps . Nine aromatic hydrogens are seen as complex multiplets from 400 to 480 cps . These data rule out the isomeric structures, 1,2-dihydro, 1-aminoindole, or 3,4-dihydro, and are in agreement with similar data on other 1,4-dihydrocinnolines. ${ }^{15}$

The same arguments apply to the butyl ester Xb which shows the same $4-\mathrm{H}$ absorption and the expected aliphatic absorption in going from ethyl to butyl in the nmr spectrum. The 1-phenyl derivative XI differs only by the lack of an exchangeable hydrogen and by an increased absorption in the $n m r$ due to the five phenyl protons.

Borderline ${ }^{13}$ antiinflammatory activity ${ }^{8}$ was found in 3-phenylcinnoline-4-carboxamide (1) and encouraged

[^3]an extension of this series, shown in Table II. Unfortunately, only the N-benzyl analog (10) showed even equal subcutaneous activity, and both were inactive in adrenalectomized animals. ${ }^{9,10}$ The series showed no interesting activity in other screening tests. ${ }^{11 b . c .1 \text { - }}$ (These amides were too insoluble to allow intravenous injection for the hypotensive test. ${ }^{11 a}$)

Table III shows aminoalkyl amides. The most interesting activity found at screening levels was hypotensive ${ }^{11 a .12}$ for 1 and 2, and antiinflammatory ${ }^{8.13}$ for 4. By contrast, the best activity shown for the piperazine amides of Table IV was antiulcer ${ }^{11 b}$ at 10 $\mathrm{mg} / \mathrm{kg}$ by 1 .

The primary hydrazides (-CONHN=) of Table V were soluble in dilute potassium hydroxide but were precipitated by addition of carbon dioxide. This behavior was used to separate 5, formed in 50% yield, from the isomeric secondary hydrazide XII in the re-

action of 1-methyl-4-hydrazinopiperidine and the acid chloride VIa. The best activity of these compounds was that of 2 in the antiinflammatory test, ${ }^{8,13 a}$ while of the esters in Table VI was that of 2 in this test. ${ }^{8.13}$

Cunter 1I

Experimental Section ${ }^{17}$

'The preparations below ilhastrate the modifications of the procedures of Baumgarten and Furnas. ${ }^{2}$

N-Benzylideneaminoisatin (IIIa).-To 126 g (1.0 mole) of oxalyl chloride in 1.5 1. of refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise in 2 hr with stirring 196 g (1.0 mole) of benzaldehyde phenylhydrazone dissolved in 2.0 l . of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was stirred and refluxed 2 hr more, then 4.50 g (3.4 nm les) of AlCl_{3} was added portionwise but rapidly, and the mixture was stired overnight. It was decomposed by pouring on ice, the organio layer was separated, washed with dilute HCl , dried first by shaking with a saturated solution of NaCl and then by filtering slowly through $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to 1 l . Upon dilution with 2 l. of ethenol and cooling to 0°, red prisms separated. ${ }^{18}$ These were filtered and dried; yield $174 \mathrm{~g}(70 \%)$ mp $145 \cdots$ $150^{\circ} .^{19}$ An additional $24 \mathrm{~g}\left(10^{\circ} \mathrm{c}\right)$ of less pure material, mp $130-145^{\circ}$, was obtained by concentrating the mother liquor in cucuo to 500 ml . All this material was suffeciently pure for conversion to the acid. A portion of the first grop was recrysiallized from a large volume of ether to yield orange needles, mp $149.5-151)^{\circ} .{ }^{19}$

Small portions of these isatins were best crystallized from ether since refluxing in higher boiling solvents as ethanol was found to canse slow decomposition.

3-Phenylcínnoline-4-carboxylic Acid (IVa).-To 1 l. of 50% K 0 H was added 155 g of the combined crops from the previous experiment. The suspension was heated with oceasional shaking
i17) All melting points are corrented and were taken in a Hershberg apfaratis. Mieroanalysis were performed by the Microanalytical Department under Dr. R. T. Dillon. Infrared speetra were recorded on a Beckman [1] 4. Ninr, recorled on a Varian A-60, is given in cycles per second (cps) of duwnfield shift from tetramethylsilane as an internal reference standard.
(18) Alternatively, the methylene chloride solution may be evaporatesl in racuo to, dryness and the residue stirred with ether to induce urystallization. (19) Fur the pmrified compounds, Taumgarten and Furnas: give meltions wibte of $111 \mathrm{a}, 148-149^{*}$: IVa, 224-224.50; Va, 118.5-119\%,
(0) reflux on a hef phate for 30 min, then dihuted arciulbe to 4 . with boiling water. The tar which did wot diswolve whik boiling was skimmed off, and the whition was s(irred with artivated chamom, filtered, and acidified with comemomed $1 \mathbf{C l}$ woplt. After roohing to room temperature the velhow puwher Was filtered oft, washed well with water, and dried: 15t) ig (!) : A mp $22^{2}+22^{2} 5^{2}$ iwith gas avolion, and fepending somewhat on the rate of heatingl. A sample was recryotallized from ethanol: yellow primin, mp 294-225 ${ }^{\circ} .^{19}$

3-Phenylcinnoline (Va)--. Twenty grams of 1 Va was mohted and heated in ath oil bath umil gas evolution ceased, then distilled at th.1-i).s num. (Cratallization irm 60 ml of methamel alforded
 from skellyolve Cat furnthed fine yellow needhes, 13.0 g, 114 , $12\left(0.5-121.5^{\circ}{ }^{\circ}\right.$
1.4-Dihydro-3-phenylcinnoline,-... Culer an atmonphere of mitogen, 1.4 g of 3 -phenybinmoline, 5.0 g of barimm herhoxide wethydrate, and 5.0 g of zinc dust were stired and refluxed for 4 her in bot mof oflamotad sto mb of water. The mixture was filtered how, ath the filtrate was satmated with CO., filteral.

1,2-Butylmalonyl-1,2-dihydro-3-phenylcínnoline (Ia).... Tい
 dine in 60 mb of CHaCle at -80° was added 0.80 go of $\alpha-b$ butylmadongl dichumbe. The ahation was allowed to warn to romon temperather : and sand overnight. After dihting with Che (\% the shlution wan wathed well with dilute HCl :mad dried hy shaking with at suturated solution of NaCland filtering through Tixit). The residue obtained he revaporation of the fitrate

 which reparatedon acidification to plr 2 was extracted with ether. which was dried tos above, and concentrated. After addition of Skrllywolve A^{24} amd comling, 0.45 g of yellow rowetter wrore
 num (CDCl_{4}) showed one vinyl proton (singlet) at $3: 3: 3$ eps, and He α-ntalonyl hydrogenas a triplet at 185 cps .
 Found: C, $76.02 ;$ [1, 6.21: N, 8.11 .

1,2-Butylmalonyl-1,2,3,4-tetrahydro-3-phenylcinnoline (Ib).

 l-sing 50 mg of E^{\prime} (Pd-C as catalyst, 328 mg of 1 a was reducod in 10 ml of aroti- aridat 25° moder hydrogen at 1 am prosure The mixture was fillared and the filtrate was evaporated in cormo. The resihne arystallized on stirring with ether': alter diluting with Skellysolve A. ${ }^{20}$ the wrytals were fillered ote and rearsiallized front 10 mb of ethor at $-1 t^{\circ}$: (lour prisma, somg: nup $128-130^{\circ}$:
 tons (once x-II. two 4 -H) as smperimposed multiplet- betweon 180 atnd 210 cps .
 Foumd: $\mathrm{C},-5.81$; H. 6.60: N, S.31.

3-Phenylcinnoline-4-carbonyl Chloride (VIa)...The acid N: (30 g) was supended in 200 ml of SOCl : and reflused 2 hr until dismolved. After evaporating the solvent in wacao, the residat was sirred with 500 ml of Skelly wolve $\mathrm{A} .{ }^{20}$ The yellow powder obtained on filtering and drying in vacuo was sufficiontly pure for further reaction. A portion was rearysthlized from Skehyoblvo 3 ; 2 29 vellow needles, mp $139-142^{\circ}$.
 Fomml: (C, ti7.0!): 11, 3.35; Cl. 13.24.

11H-Indenol, 2 -r cinnolin-11-one (VIIa).... In the bot of - everal rums: 83 g (0.4 mole) of AlCl_{4} was added portionwise with stitring to a refluxing sohntion of so. 0.0 g (0.193 m mole) of VI: in So0 mil of Cs. After 1 hr the clear supermate whe deanted, and the residue was deromposed with ice and extrated with chlorofornt. This extrart was washed three times with dilute $H(y$ and once with dilute KOH , then dried by shaking with a saturated sohtion of $\overline{\mathrm{NaCl}}$:mul filering through anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. On concentrating lhe solution to 200 ml and cooling, orange needle coparated which were tiltered off and dried, $20.0 \mathrm{~g}(4 \overline{5} \%), 1 m$ $291-292^{\circ}$. Additional les pure mops totaling $13.7 \mathrm{~g}(30 \%)$ werobtaned from the mother liguor.

[^4]Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 77.57 ; \mathrm{H}, 3.47 ; \mathrm{N}, 12.06$. Found: C, 77.63; H, 3.69; N, 12.02 .

3-(4-Methoxyphenyl)-4-benzoylcinnoline (VIIIc) and 9-Meth-oxy-11H-indeno[1,2-c]cinnolín-11-one (VIIc).-A mixture of 3.0 g of VIc and 2.6 g of AlCl_{3} was stirred in 150 ml of benzene for 21 hr . After decomposition with ice, washing with acid and base, and drying as in the previous example, the solution was evaporated and the residue in benzene was chromatographed on alumina. Elution with 5% ethyl acetate-benzene, followed by recrystallization from ethanol of the first fractions, vielded VIIIc as yellow prisms, mp $165.5-166.5^{\circ}, \lambda_{\text {n... }}^{\mathrm{Kln}} 6.0 \mu(\mathrm{C}=0)$, and VIIc in later fractions as red needles, $\mathrm{mp} 214-215^{\circ}, \lambda_{\max }^{\mathrm{KBr}} 5.8 \mu(\mathrm{C}=0)$, in a ratio of about 6:1.
Anal. of VIIIc. Calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $77.63 ; \mathrm{H}, 4.74$; $\mathrm{N}, 8.23 ; \mathrm{OCH}_{3}, 9.12$. Found: C, 77.61; H, 4.81; N, 8.36; OCH_{3}, , 2.24 .
Anal. of VIIc. Calcd for $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{0} \mathrm{O}_{2}: ~ \mathrm{C}, 73.27 ; \mathrm{H}, 3.84 ;$ N, 10.68; Found: C, 73.11; H, 3.78; N, 10.61.
Ethyl 3-Phenylcinnoline-4-carboxylate (IX).-A solution of 48.0 g of VIa in 1 l . of ethanol was refluxed 1 hr , then evaporated in vacuo. The residue in methylene chloride was washed with dilute $\mathrm{K}_{2} \mathrm{CO}_{3}$, the solution was dried (see VIIa), and the solvent was evaporated in vacuo. Crystallization from ethyl acetateSkellysolve C ${ }^{20}$ afforded $41.0 \mathrm{~g}(77 \%)$ of yellow prisms, mp $85-$ 90°. An analytical sample was recrystallized from methanol, $\mathrm{mp} 92-93^{\circ}$.
Anal. Caled for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, $73.36 ; \mathrm{H}, 5.07 ; \mathrm{N}, 10.07$. Found: C, 73.06; H, 5.10; N, 9.01.

Ethyl 1,3-Diphenyl-1,4-dihydrocinnoline-4-carboxylate (XI) and Ethyl 3-Phenyl-1,4-dihydrocinnolíne-4-carboxylate (Xa).$\mathrm{T}_{0} 20.6 \mathrm{~g}(0.074 \mathrm{~mole})$ of IX dissolved in 1.5 l . of anhydrous ether was added dropwise with stirring 18.1 g (0.1 mole) of phenylmagnesium bromide in 50 ml of ether. After stirring 2 hr , the solution was decomposed with water and washed first with dilute HCl and then with dilute KOH . It was dried (see VIIa) and evaporated. Chromatography of the residue (27 g) on silica and elution furnished the principal products in this order: biphenyl (4.7 g , eluted with 20% benzene-Skellysolve B^{20}), XI ($1.3 \mathrm{~g}, 75 \% \mathrm{C}_{6} \mathrm{H}_{6}$-Skellysolve B^{20}), $\mathrm{Xa}\left(6.4 \mathrm{~g}, 100 \% \mathrm{C}_{6} \mathrm{H}_{6}\right.$), IX (starting material, $10.2 \mathrm{~g}, 5 / \%$ ethyl acetate-benzene). XI was crystallized from Skellysolve B; ${ }^{20}$ tan clusters, $\mathrm{mp} 111-112^{\circ}$.
Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}: ~ \mathrm{C}, 77.50 ; \mathrm{H}, 5.66 ; \mathrm{N}, 7.86$. Found: C, 76.97 ; H, 5.65 ; N, 8.23.
Xa was crystallized from ether-Skellysolve $\mathrm{A} ;{ }^{20}$ white blades, mp 82-84 ${ }^{\circ}$.

Anal. Caled for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.84; H, 5.75; N, 9.99. Found: C, 72.91 ; H, 5.64; N, 10.13.
Butyl 3-Phenyl-1,4-dihydrocinnoline-4-carboxylate (Xb).-A solution of 11.5 g (0.04 mole) of IX and 12 g (0.3 mole) of methylhydrazine in 70 ml of butanol was refluxed 15 hr . The residue after evaporation in vacuo was stirred with ether, and the yellow powder was filtered off and dried; $5.3 \mathrm{~g}, \mathrm{mp} 160-165^{\circ}$. Repeated recrystallization from methanol and from ethanol failed to yield a homogeneous product.
The ether filtrate was evaporated and the residue was chromatographed on silica. Elution with benzene gave first (along with
starting material later) crystalline fractions which when recrystallized from Skellysolve B^{20} formed 0.42 g of white needles, $\operatorname{mp} 64-66^{\circ}$.

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 74.00 ; \mathrm{H}, 6.54 ; \mathrm{N}, 9.09$; $\mathrm{mol} w \mathrm{t}, 308.37$. Found: C, $73.78 ; \mathrm{H}, 6.41 ; \mathrm{N}, 9.03$; mol wt, 309.

3-Phenylcínnoline-4-carboxamide (Table II, 1).-To 2.7 g of VIa in 300 ml of butanone was added 10 ml of concentrated $\mathrm{NH}_{4} \mathrm{OH}$, and the solution refluxed 1.5 hr . After evaporation of the solvent in vacuo, the residue was stirred with dilute NaOH , and the solid was filtered off, washed well with water, and then with a small amount of methanol. Crystallization twice from ethanol afforded 1.6 g of yellow prisms described in Table II.

3-Phenylcinnoline-4-(N-benzyl)carboxamide (Table II, 10).To a solution of $\overline{5} .3 \mathrm{~g}$ (0.05 mole) of benzylamine in 150 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly a solution of 4.6 g (0.017 mole) of VIa in 50 ml of methylene chloride. The solution stood overnight. It was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with dilute HCl , dilute KOH , and water, and then dried (see VIIa). The residue obtained by evaporation of the solvent in vacuo was crystallized from chloroform, yielding 4.4 g of white needles described in Table II.

3-Phenylcinnoline-4-(N-(3-dimethylaminopropy))]carboxamide (Table III, 1).-To a solution of 3.0 g (0.03 mole) of 3-dimethylaminopropylamine and 3.0 ml (0.022 mole) of pyridiue in 150 ml of methylene chloride was added slowly a solution of 5.4 g (0.02 mole) of VIa in 50 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After standing overnight, the solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed well with dilute KOH . It was dried (as VIIa) and evaporated in vacuo. The residue was dissolved in dilute HCl , which was washed with ether and then made basic with dilute KOH . The suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ which was dried and evaporated. Crystallization of the residue from methylene chloride-Skellysolve B^{20} afforded 4.0 g of yellow flakes described in Table III.

3-Phenyl-4-(1-piperazinylcarbonyl)cínnoline (Table IV, 1).A solution of 26.9 g (0.1 mole) of VIa in 500 ml of butanone was added dropwise with stirring in 1 hr to 25 g (0.3 mole) of piperazine dissolved in 150 ml of butanone. After stirring 1 hr the piperazine monohydrochloride was filtered off, and the filtrate was evaporated in vacuo. The residue was dissolved in dilute HCl , which was filtered to remove a small amount of solid and then worked up as in the preparation above of 1, Table III. The maleic acid salt of the product was prepared in methanol and is described in Table IV.

1-(3-Phenylcinnoline-4-carbonyl)-2-(1-methyl-4-piperidinyl)hydrazine (Table V, 5).-A solution of 10.8 g (0.04 mole) of VIa in 100 ml of methylene chloride was added dropwise with stirring to 13.0 g (0.10 mole) of 1 -methyl-4-hydrazinopiperidine ${ }^{21}$ dissolved in 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After standing 2 days the solution was washed with a $5 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ solution, then extracted with 10% KOH . This extract was neutralized to pH 7 and extracted with methylene chloride, which was dried (as VIIa) and evaporated in vacuo. Crystallization of the 7 -g residue from acetone yielded 4.8 g of shiny, pale yellow plates, described in Table V.

[^5]
[^0]: (1) J. Büchi. J. Ammann. R. Lieberherr, and E. Eichenberger. Helr. Chim. Acta. 36, 75 (1953).
 (2) H. E. Batımgarten and J. L. Furnas, J. Org. Chem.، 26, 1536 (1961).
 (3) The phenyl-bridged analogs have been prepared in several laboratories: 11. S. Lowrie. J. Med. Pharm. Chem. 5. 1362 (1962), and references therein. (4) The 4-plenyl isomer of Ia lias recently been reported by (a) D. F. Ames, R. F. Chapman, and H. Z. Kucharska. J. Chem. Soc.. 6659 (1964); and (b) T. Wagner-Jauregg. F. Schatz, and U. Jabn [U. S. Fatent 3.222.366 (1965): French Patent $1,303.596$ (1065)] Who prepared a series of related derivatives.
 (5) Paper [I: H. S. Lowrie, J. Mat. Ohor, 9, ti70 (19tio).

[^1]: (i) 'Ple sembone way rammtal' mencessfal with the rurrespombing (h) here coinpernitl.

[^2]: (8) Compounds were tested as inhibitors of yeast-induced foot edema in male. Badger rats (120 g). The minimal effective dose of phenylbutazone was $120 \mathrm{mg} / \mathrm{kg}$ subcutaneously. $175 \mathrm{mg} / \mathrm{kg}$ orally.
 (9) We are indebted to Drs. F. J. Saunders and E. F. Nutting and their staff for the data from these tests in ref 8 and 10 .
 (10) Inhibition of cotton pellet induced granuloma growth was measured in adrenalectomized, male, Sprague-Dawley rats (200 g) for a 2 -day period. A screening dose of $200 \mathrm{mg} / \mathrm{kg} /$ day orally was used. The minimal effective dose of phenylbutazone was $25 \mathrm{mg} / \mathrm{kg} /$ day orally.
 (11) (a) Hypotensive activity: the decrease in mean pressure following injection of the test compound in the femoral vein was directly recorded from arterial cannulation of normal dogs anesthetized with pentobarbital sodium. The screening dose was $5 \mathrm{mg} / \mathrm{kg}$. (b) Antiulcer activity: following intragastric administration of the test compound to male Charles River rats (250 g). inhibition was observed of ulceration induced by pyloric ligation as described by H. Shay. S. A. Kamarov. D. Meranque, M. Gruenstein, and H. Siblet. Gastroenterology. B, 43 (1945). (e) Diuretic activity: the diuresis produced in 5 hr by intragastric administration of the test compound in saline-primed, male. Sprague-Dawley rats (300 g) was compared with that of controls treated with hydrochlorothiazide.
 (12) We are indebted to Dr. D. L. Cook and Mr. R. S. Jacobs and their staff for data from the tests in ref 11.
 (13) (a) $80 \mathrm{mg} / \mathrm{kg}$ subcutaneously: (b) $320 \mathrm{mg} / \mathrm{kg}$ orally.
 (14) (a) M. H. Duval, Bull. Soc. Chim. France. [4] 7, 727 (1910). (b) This compound was obtained along with 3 -phenylcinnoline by the $\mathrm{Li}_{\mathrm{H}} \mathrm{H}_{4}$ reduction of 3-phenyl-4-cinnolinol: C. M. Atkinson and C. J. Sharpe. J. Chem. Soc.. 2858 (1959).
 (15) L. S. Besford, G. Allen, and J. M. Bruce. J. Chem. Soci. 2867 (1963).

[^3]: (16) S. Kubota. T. Akita، and T. Yokoshima، J. Pharm. Soc. Japan, 78, 1194 (1958).

[^4]:

[^5]: (21) A. Ebnöther, E. Jucker. A. Lindenmann. E. Rissi, R. Steiner, R. Süess, and A. Vogel, Helr. Chim. Acta, 42, 533 (1959).

